金牛區(qū)九里堤街高二理綜補(bǔ)習(xí)班有哪些區(qū)別
10、冪函數(shù) ( ),其中 是自變量。要求掌握 這五種情況(如下圖)
【摘要】高中如何復(fù)習(xí)一直都是考生們關(guān)注的話題,下面是查字典數(shù)學(xué)網(wǎng)的編輯為大家準(zhǔn)備的高一數(shù)學(xué)必修2知識(shí)點(diǎn) 直線與方程
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0180
(2)直線的斜率
①定義:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即 。斜率反映直線與軸的傾斜程度。
當(dāng) 時(shí), ; 當(dāng) 時(shí), ; 當(dāng) 時(shí), 不存在。
②過(guò)兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):(1)當(dāng) 時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90
(2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
(3)直線方程
①點(diǎn)斜式: 直線斜率k,且過(guò)點(diǎn)
注意:當(dāng)直線的斜率為0時(shí),k=0,直線的方程是y=y1。
當(dāng)直線的斜率為90時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。
②斜截式: ,直線斜率為k,直線在y軸上的截距為b
③兩點(diǎn)式: ( )直線兩點(diǎn) ,
④截矩式:
其中直線 與 軸交于點(diǎn) ,與 軸交于點(diǎn) ,即 與 軸、 軸的截距分別為 。
⑤一般式: (A,B不全為0)
注意:各式的適用范圍 特殊的方程如:
平行于x軸的直線: (b為常數(shù)); 平行于y軸的直線: (a為常數(shù));
,,高考考題信息準(zhǔn)確超前,戴氏教育31年教學(xué)經(jīng)驗(yàn),準(zhǔn)確預(yù)測(cè)歷年高考考題方向,編制高考考題大綱!為學(xué)生高考準(zhǔn)確護(hù)航!
(5)直線系方程:即具有某一共同性質(zhì)的直線
(一)平行直線系
平行于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))
(二)垂直直線系
垂直于已知直線 ( 是不全為0的常數(shù))的直線系: (C為常數(shù))
(三)過(guò)定點(diǎn)的直線系
(ⅰ)斜率為k的直線系: ,直線過(guò)定點(diǎn) ;
(ⅱ)過(guò)兩條直線 , 的交點(diǎn)的直線系方程為
( 為參數(shù)),其中直線 不在直線系中。
(6)兩直線平行與垂直
當(dāng) , 時(shí),
;
注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。
(7)兩條直線的交點(diǎn)
相交
交點(diǎn)坐標(biāo)即方程組 的一組解。
方程組無(wú)解 ; 方程組有無(wú)數(shù)解 與 重合
(8)兩點(diǎn)間距離公式:設(shè) 是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),
則
(9)點(diǎn)到直線距離公式:一點(diǎn) 到直線 的距離
(10)兩平行直線距離公式
在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。
考生們只要加油努力,就一定會(huì)有一片藍(lán)天在等著大家。以上就是查字典數(shù)學(xué)網(wǎng)的編輯為大家準(zhǔn)備的高一數(shù)學(xué)必修2知識(shí)點(diǎn) 直線與方程
[-2,2],而積的值域卻是[-1,1],因此除以2是必須的。